FIPS 140-2 Non-Proprietary Security Policy # Common Crypto Module for NetGard Privileged Gateway, SA5600-IA and NetGard MFD Software Version 1.0 **Document Version 1.3** October 29, 2020 Prepared For: API Technologies Corp. 400 Nickerson Road Marlborough, MA 01752 www.apitech.com Prepared By: SafeLogic Inc. 530 Lytton Ave, Suite 200 Palo Alto, CA 94301 www.safelogic.com # **Abstract** This document provides a non-proprietary FIPS 140-2 Security Policy for Common Crypto Module for NetGard Privileged Gateway, SA5600-IA and NetGard MFD. # **Table of Contents** | 1 | Intro | duction | 5 | |---|-------|--|----| | | 1.1 | About FIPS 140 | 5 | | | 1.2 | About this Document | 5 | | | 1.3 | External Resources | 5 | | | 1.4 | Notices | 5 | | | 1.5 | Acronyms | 5 | | 2 | Com | mon Crypto Module for NetGard Privileged Gateway, SA5600-IA and NetGard MFD | 7 | | | 2.1 | Cryptographic Module Specification | 7 | | | 2.1.1 | Validation Level Detail | 7 | | | 2.1.2 | Approved Cryptographic Algorithms | 7 | | | 2.1.3 | Non-Approved Cryptographic Algorithms | 10 | | | 2.1.4 | Non-Approved Mode of Operation | 10 | | | 2.2 | Module Interfaces | 12 | | | 2.3 | Roles, Services, and Authentication | 13 | | | 2.3.1 | Operator Services and Descriptions | 13 | | | 2.3.2 | Operator Authentication | 14 | | | 2.4 | Physical Security | 14 | | | 2.5 | Operational Environment | 14 | | | 2.6 | Cryptographic Key Management | 15 | | | 2.6.1 | Random Number Generation | 16 | | | 2.6.2 | Key/Critical Security Parameter (CSP) Authorized Access and Use by Role and Service/Function | 17 | | | 2.6.3 | Key/CSP Storage | 17 | | | 2.6.4 | Key/CSP Zeroization | 17 | | | 2.7 | Self-Tests | | | | 2.7.1 | Power-On Self-Tests | 18 | | | 2.7.2 | Conditional Self-Tests | 19 | | | 2.7.3 | Cryptographic Function | 19 | | | 2.8 | Mitigation of Other Attacks | 19 | | 3 | Guid | ance and Secure Operation | 20 | | | 3.1 | Crypto Officer Guidance | 20 | | | 3.1.1 | Software Installation | 20 | | | 3.1.2 | Additional Rules of Operation | 20 | | | 3.2 | User Guidance | 20 | | | 3 2 1 | General Guidance | 20 | # **List of Tables** | Table 1 – Acronyms and Terms | 6 | |--|----| | Table 2 – Validation Level by FIPS 140-2 Section | 7 | | Table 3 – FIPS-Approved Algorithm Certificates | 9 | | Table 4 – Logical Interface / Physical Interface Mapping | 13 | | Table 5 – Module Services, Roles, and Descriptions | 14 | | Table 6 – Module Keys/CSPs | 16 | | Table 7 – Power-On Self-Tests | 18 | | Table 8 – Conditional Self-Tests | 19 | | List of Figures | | | Figure 1 – Module Boundary and Interfaces Diagram | 12 | # 1 Introduction #### 1.1 **About FIPS 140** Federal Information Processing Standards Publication 140-2 — Security Requirements for Cryptographic Modules specifies requirements for cryptographic modules to be deployed in a Sensitive but Unclassified environment. The National Institute of Standards and Technology (NIST) and Communications Security Establishment Canada (CSEC) Cryptographic Module Validation Program (CMVP) run the FIPS 140 program. The NVLAP accredits independent testing labs to perform FIPS 140 testing; the CMVP validates modules meeting FIPS 140 validation. *Validated* is the term given to a module that is documented and tested against the FIPS 140 criteria. More information is available on the CMVP website at http://csrc.nist.gov/groups/STM/cmvp/index.html. #### 1.2 About this Document This non-proprietary Cryptographic Module Security Policy for the Common Crypto Module for NetGard Privileged Gateway, SA5600-IA and NetGard MFD from API Technologies provides an overview of the product and a high-level description of how it meets the security requirements of FIPS 140-2. This document contains details on the module's cryptographic keys and critical security parameters. This Security Policy concludes with instructions and guidance on running the module in a FIPS 140-2 mode of operation. API Technologies Common Crypto Module for NetGard Privileged Gateway, SA5600-IA and NetGard MFD may also be referred to as the "module" in this document. #### 1.3 External Resources The API Technologies website contains information on API Technologies services and products. The Cryptographic Module Validation Program website contains links to the FIPS 140-2 certificate and API Technologies contact information. #### 1.4 Notices This document may be freely reproduced and distributed in its entirety without modification. # 1.5 Acronyms The following table defines acronyms found in this document: | ARES Advanced Encryption Standard ANSI American National Standards Institute API Application Programming Interface CMVP Cryptographic Module Validation Program CO Crypto Officer CSEC Communications Security Establishment Canada CSP Critical Security Parameter DES Data Encryption Standard DH Diffie-Hellman DRBG Deterministic Random Bit Generator DSA Digital Signature Algorithm EC Elliptic Curve EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security USB Universal Serial Bus | Acronym | Term | |--|------------|--| | API Application Programming Interface CMVP Cryptographic Module Validation Program CO Crypto Officer CSEC Communications Security Establishment Canada CSP Critical Security Parameter DES Data Encryption Standard DH Diffie-Hellman DRBG Deterministic Random Bit Generator DSA Digital Signature Algorithm EC Elliptic Curve EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | AES | Advanced Encryption Standard | | CMVP Cryptographic Module Validation Program CO Crypto Officer CSEC Communications Security Establishment Canada CSP Critical Security Parameter DES Data Encryption Standard DH Diffie-Hellman DRBG Deterministic Random Bit Generator DSA Digital Signature Algorithm EC Elliptic Curve EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | ANSI | American National Standards Institute | | CO Crypto Officer CSEC Communications Security Establishment Canada CSP Critical Security Parameter DES Data Encryption Standard DH Diffie-Hellman DRBG Deterministic Random Bit Generator DSA Digital Signature Algorithm EC Elliptic Curve EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | API |
Application Programming Interface | | CSEC Communications Security Establishment Canada CSP Critical Security Parameter DES Data Encryption Standard DH Diffie-Hellman DRBG Deterministic Random Bit Generator DSA Digital Signature Algorithm EC Elliptic Curve EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | CMVP | Cryptographic Module Validation Program | | CSP Critical Security Parameter DES Data Encryption Standard DH Diffie-Hellman DRBG Deterministic Random Bit Generator DSA Digital Signature Algorithm EC Elliptic Curve EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | CO | Crypto Officer | | DES Data Encryption Standard DH Diffie-Hellman DRBG Deterministic Random Bit Generator DSA Digital Signature Algorithm EC Elliptic Curve EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | CSEC | Communications Security Establishment Canada | | DH Diffie-Hellman DRBG Deterministic Random Bit Generator DSA Digital Signature Algorithm EC Elliptic Curve EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | CSP | Critical Security Parameter | | DRBG Deterministic Random Bit Generator DSA Digital Signature Algorithm EC Elliptic Curve EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | DES | Data Encryption Standard | | DSA Digital Signature Algorithm EC Elliptic Curve EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | DH | Diffie-Hellman | | EC Elliptic Curve EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | DRBG | Deterministic Random Bit Generator | | EMC Electromagnetic Compatibility EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | DSA | Digital Signature Algorithm | | EMI Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | EC | Elliptic Curve | | FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | EMC | Electromagnetic Compatibility | | FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | EMI | Electromagnetic Interference | | GPC GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | FCC | Federal Communications Commission | | GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | FIPS | Federal Information Processing Standard | | HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating
System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | GPC | General Purpose Computer | | KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | GUI | Graphical User Interface | | MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | HMAC | (Keyed-) Hash Message Authentication Code | | MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | KAT | Known Answer Test | | NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | MAC | Message Authentication Code | | OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | MD | Message Digest | | PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | NIST | National Institute of Standards and Technology | | PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | OS | Operating System | | PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | PKCS | Public-Key Cryptography Standards | | RNG Random Number Generator RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | PRNG | Pseudo Random Number Generator | | RSA Rivest, Shamir, and Adleman SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | PSS | Probabilistic Signature Scheme | | SHA Secure Hash Algorithm SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | RNG | Random Number Generator | | SSL Secure Sockets Layer Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | RSA | Rivest, Shamir, and Adleman | | Triple-DES Triple Data Encryption Algorithm TLS Transport Layer Security | SHA | Secure Hash Algorithm | | TLS Transport Layer Security | SSL | Secure Sockets Layer | | , , , | Triple-DES | Triple Data Encryption Algorithm | | USB Universal Serial Bus | TLS | Transport Layer Security | | | USB | Universal Serial Bus | Table 1 – Acronyms and Terms # 2 Common Crypto Module for NetGard Privileged Gateway, SA5600-IA and NetGard MFD # 2.1 Cryptographic Module Specification The Common Crypto Module for NetGard Privileged Gateway, SA5600-IA and NetGard MFD is a standards-based cryptographic engine for servers and appliances. The module delivers core cryptographic functions and features robust algorithm support, including Suite B algorithms. The module's logical cryptographic boundary is the shared library files and their integrity check HMAC files. The module is a multi-chip standalone embodiment installed on a General Purpose Computer. All operations of the module occur via calls from host applications and their respective internal daemons/processes. As such there are no untrusted services calling the services of the module. #### 2.1.1 Validation Level Detail The following table lists the level of validation for each area in FIPS 140-2: | FIPS 140-2 Section Title | Validation Level | |--|------------------| | Cryptographic Module Specification | 1 | | Cryptographic Module Ports and Interfaces | 1 | | Roles, Services, and Authentication | 1 | | Finite State Model | 1 | | Physical Security | N/A | | Operational Environment | 1 | | Cryptographic Key Management | 1 | | Electromagnetic Interference / Electromagnetic Compatibility | 1 | | Self-Tests | 1 | | Design Assurance | 1 | | Mitigation of Other Attacks | N/A | Table 2 - Validation Level by FIPS 140-2 Section # 2.1.2 Approved Cryptographic Algorithms The module's cryptographic algorithm implementations have received the following certificate numbers from the Cryptographic Algorithm Validation Program: | ECB (e/d; 128, 192, 256) CBC (e/d; 128, 192, 256) CCFB (e/d; 128, 192, 256) CCFB (e/d; 128, 192, 256) CCFB (e/d; 128, 192, 256) CTR (ext only; 128, 192, 256) CCM (KS: 128, 192, 256) CMAC (Generation/Verification) (KS: 128, 192, 256) GCM (KS: AES_128(e/d), AES_192(e/d), AES_256(e/d)) GMAC_Supported XTS((KS: XTS_128((e/d) (f/p)) KS: XTS_256((e/d) (f/p) HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1) Sig Gen: 2048-bit & 3072-bit (using SHA-2) FCDSA, ECDSA2 FIPS 186-2 FIPS 186-2 FKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B | Algorithm | CAVP Certificate | |--|---|------------------| | CBC (e/d; 128 , 192 , 256) CFB1 (e/d; 128 , 192 , 256) CFB3 (e/d; 128 , 192 , 256) CFB3 (e/d; 128 , 192 , 256) CFB (e/d; 128 , 192 , 256) CTR (ext only; 128 , 192 , 256) CCM (KS: 128 , 192 , 256) CCM (KS: 128 , 192 , 256) CCM(KS: 128 , 192 , 256) CCM(KS: 128 , 192 , 256) CCM(KS: AES_128(e/d) , AES_192(e/d) , AES_256(e/d)) GMAC_Supported XTS((KS: XTS_128((e/d) (f/p)) KS: XTS_256((e/d) (f/p)) HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 | AES | 2273 | | CFB1 (e/d; 128, 192, 256) CFB8 (e/d; 128, 192, 256) OFB (e/d; 128, 192, 256) OFB (e/d; 128, 192, 256) CTR (ext only; 128, 192, 256) CCM (KS: 128, 192, 256) CMAC (Generation/Verification) (KS: 128, 192, 256) GCM (KS: AES_128(e/d), AES_192(e/d), AES_256(e/d)) GMAC_Supported XTS((KS: XTS_128((e/d) (f/p)) KS: XTS_256((e/d) (f/p)) HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Gen: 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit (using SHA-1 & SHA-2) Sig Gen: 2048-bit & 3072-bit (using SHA-1 & SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves
(P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B | | | | CFB8 (e/d; 128, 192, 256) OFB (e/d; 128, 192, 256) CTR (ext only; 128, 192, 256) CCM (KS: 128, 192, 256) CCM (KS: 128, 192, 256) CMAC (Generation/Verification) (KS: 128, 192, 256) GCM (KS: AES_128(e/d), AES_192(e/d), AES_256(e/d)) GMAC_Supported XTS((KS: XTS_128((e/d) (f/p)) KS: XTS_256((e/d) (f/p) HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit (using SHA-1) Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1) FKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B | | | | OFB (e/d; 128 , 192 , 256) CTR (ext only; 128 , 192 , 256) CCM (KS: 128 , 192 , 256) CCMAC (Generation/Verification) (KS: 128, 192, 256) GCM (KS: AES_128(e/d), AES_192(e/d), AES_256(e/d)) GMAC_Supported XTS((KS: XTS_128((e/d) (f/p)) KS: XTS_256((e/d) (f/p) HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit (using SHA-1) Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1) Sig Sen: 2048-bit & 3072-bit (using SHA-1) Sig PS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B | | | | CTR (ext only; 128 , 192 , 256) CCM (KS: 128 , 192 , 256) CMAC (Generation/Verification) (KS: 128, 192, 256) GCM (KS: AES_128(e/d), AES_192(e/d), AES_256(e/d)) GMAC_Supported XTS((KS: XTS_128((e/d) (f/p)) KS: XTS_256((e/d) (f/p) HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1 & SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B | | | | CCM (KS: 128, 192, 256) CMAC (Generation/Verification) (KS: 128, 192, 256) GCM (KS: AES_128(e/d), AES_192(e/d), AES_256(e/d)) GMAC_Supported XTS((KS: XTS_128((e/d) (f/p)) KS: XTS_256((e/d) (f/p) HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B | | | | CMAC (Generation/Verification) (KS: 128, 192, 256) GCM (KS: AES_128(e/d), AES_192(e/d), AES_256(e/d)) GMAC_Supported XTS((KS: XTS_128((e/d) (f/p)) KS: XTS_256((e/d) (f/p) HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit (using SHA-2) Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B | O (O | | | GCM (KS: AES_128(e/d), AES_192(e/d), AES_256(e/d)) GMAC_Supported XTS((KS: XTS_128((e/d) (f/p)) KS: XTS_256((e/d) (f/p) HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B | CCM (KS: 128 , 192 , 256) | | | GMAC_Supported XTS((KS: XTS_128((e/d) (f/p)) KS: XTS_256((e/d) (f/p) HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit (using SHA-2) Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1 & SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | CMAC (Generation/Verification) (KS: 128, 192, 256) | | | XTS((KS: XTS_128((e/d) (f/p)) KS: XTS_256((e/d) (f/p) HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | GCM (KS: AES_128(e/d), AES_192(e/d), AES_256(e/d)) | | | HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) | GMAC_Supported | | | HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC- SHA-384, HMAC-SHA-512 DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) | VTC/ (VC: VTC 129/ (a/d) (f/a)) VC: VTC 2E6/ (a/d) (f/a) | | | DSA, DSA 2 FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig
Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | | 1301 | | FIPS 186-2 PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B | | | | PQR Ver: Sig Ver- 1024-bit F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) | | 703 | | F186-4 PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1 & SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B | | | | PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | PQN Vel. Sig Vel-1024-bit | | | PQG Gen: 2048 & 3072 (using SHA-2) PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | F186-4 | | | PQG Ver: 1024, 2048 & 3072 (using SHA-1 and SHA-2) Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1 & SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B | | | | Key Pair: 2048-bit & 3072-bit Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1 & SHA-2) ECDSA, ECDSA2 368 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | | | | Sig Gen: 2048-bit & 3072-bit (using SHA-2) Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1 & SHA-2) ECDSA, ECDSA2 368 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | | | | Sig Ver: 1024-bit. 2048-bit & 3072-bit (using SHA-1 & SHA-2) ECDSA, ECDSA2 FIPS 186-2 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | | | | FIPS 186-2 PKG : Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV : Curves All P, K & B FIPS 186-4 PKG : Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV : Curves All P, K & B Sig Gen : (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | | | | PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | ECDSA, ECDSA2 | 368 | | & B-571) PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | FIPS 186-2 | | | PKV: Curves All P, K & B FIPS 186-4 PKG: Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV: Curves All P, K & B Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | PKG : Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-409 | | | FIPS 186-4 PKG : Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV : Curves All P, K & B Sig Gen : (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | & B-571) | | | PKG : Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV : Curves All P, K & B Sig Gen : (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | PKV: Curves All P, K & B | | | PKG : Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) PKV : Curves All P, K & B Sig Gen : (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | | | | & B-571) PKV : Curves All P, K & B Sig Gen : (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | | | | PKV : Curves All P, K & B Sig Gen : (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | PKG : Curves (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 | | | Sig Gen: (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B- | · | | | | | | | | Sig Gen : (P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-283, B-409 & B-571) (SHA-2) | | | Sig Ver : Curves P-192, P224, P-256, P-384, P-521, K-163, K-233, K-283, B-163, B- | Sig Ver : Curves P-192, P224, P-256, P-384, P-521, K-163, K-233, K-283, B-163, B- | | | 233, B-283, B-409 & B-571 (any SHA size) | 233, B-283, B-409 & B-571 (any SHA size) | | | K-409 & K-571 (SHA-1) | K-409 & K-571 (SHA-1) | | | RSA (X9.31, PKCS #1.5, PSS) | 1166 | |---|------| | FIPS 186-2 | | | ANSIX9.31 | | | Key Gen: 2048-bit, 3072-bit & 4096-bit | | | Sig Gen: 2048-bit, 3072-bit & 4096 bit (any SHA size) | | | Sig Ver: 1024-bit, 1536-bit, 2048-bit, 3072-bit & 4096-bit (any SHA size) | | | 31g ver. 1024 bit, 1330 bit, 2040 bit, 3072 bit & 4030 bit (any 311A 312C) | | | PKCS1 V1 5 | | | Sig Gen: 2048-bit, 3072-bit & 4096-bit (any SHA size) | | | Sig Ver: 1024-bit, 1536-bit, 2048-bit, 3072-bit & 4096-bit (any SHA size) | | | 31g ver. 1024 bit, 1330 bit, 2040 bit, 3072 bit & 4030 bit (ally 311/13/20) | | | PSS | | | Sig Gen: 2048-bit, 3072-bit & 4096-bit (any SHA size) | | | Sig Ver: 1024-bit, 1536-bit, 2048-bit, 3072-bit & 4096-bit (any SHA size) | | | | | | FIPS 186-4 | | | ANSIX9.31 | | | Sig Gen: 2048-bit (using SHA-2) | | | Sig Ver: 1024-bit, 2048-bit, & 3072-bit (any SHA size) | | | | | | PKCS1 V1 5 | | | Sig Gen: 2048-bit & 3072-bit (using SHA-2) | | | Sig Ver: 1024-bit, 2048-bit, & 3072-bit (any SHA size) | | | | | | PSS | | | Sig Gen: 2048-bit & 3072-bit (using SHA-2) | | | Sig Ver: 1024-bit, 2048-bit, & 3072-bit (any SHA size) | | | SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 | 1954 | | Triple-DES | 1420 | | TECB(KO 1 e/d, KO 2 d only) | | | TCBC(KO 1
e/d, KO 2 d only) | | | TCFB1(KO 1 e/d, KO 2 d only) | | | TCFB8(KO 1 e/d, KO 2 d only) | | | TCFB64(KO 1 e/d, KO 2 d only) TOFB(KO 1 e/d, KO 2 d only) | | | TOTAL NO 1 6/4, NO 2 4 OTHY / | | | CMAC(KS: 3-Key; Generation/Verification; Block Size(s): Full / Partial) | | | SP 800-90 DRBG (Hash_DRBG, HMAC_DRBG, CTR_DRBG) | 281 | | CVL (ECC CDH KAS) | 44 | | Table 3 – FIPS-Approved Algorithm Certificates | | Table 3 – FIPS-Approved Algorithm Certificates # 2.1.3 Non-Approved Cryptographic Algorithms The module supports the following non-FIPS 140-2 approved but allowed algorithms: - RSA encrypt/decrypt with key sizes of 2048-15360 bits (key wrapping; key establishment methodology provides between 112 and 256 bits of encryption strength; non-compliant less than 112 bits of encryption strength) - EC Diffie-Hellman (key agreement; key establishment methodology provides between 112 and 256 bits of encryption strength; non-compliant less than 112 bits of encryption strength) # 2.1.4 Non-Approved Mode of Operation The module supports a non-approved mode of operation. The algorithms listed in this section are not to be used by the operator in the FIPS Approved mode of operation. The following algorithms are disallowed as of January 1, 2016 per the NIST SP 800-131A algorithm transitions: - NIST-Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 - Two-Key Triple DES Encryption The following algorithm is disallowed as of October 29, 2015 per the removal from NIST SP 800-90A: • Dual EC DRBG The following algorithms are disallowed as of January 1, 2014 per the NIST SP 800-131A algorithm transitions: • FIPS 186-2 DSA (using SHA-1): PQG Gen- 1024-bit Key Gen- 1024-bit Sig Gen- 1024-bit FIPS 186-4 DSA PQG Gen, 1024-bit (any SHA size) Key Gen, 1024-bit Sig Gen, 1024-bit (any SHA size), 2048-bit & 3072-bit using SHA-1 • FIPS 186-2 RSA **ANSIX9.31** Key Gen 1024 & 1536 **ANSIX9.31** Sig Gen 1024 & 1536 (any SHA size); 2048, 3072 & 4096 using SHA-1 PKCSI V15 Sig Gen 1024 & 1536 (any SHA size); 2048, 3072 & 4096 using SHA-1 PSS Sig Gen 1024 & 1536 (any SHA size); 2048, 3072 & 4096 using SHA-1 • FIPS 186-4 RSA **ANSIX9.31** Sig Gen 1024 using SHA-1 PKCSI V1 5 Sig Gen 1024 using SHA-1 PSS Sig Gen 1024 using SHA-1 • FIPS 186-2 ECDSA **PKG: Curves** P-192, K-163 & B-163 Sig Gen Curves All P, K & B • FIPS 186-4 ECDSA **PKG: Curves** P-192, K-163 & B-163 Sig Gen Curves P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B-233, B-283, B-409 & B-571) (using SHA-1) P-192-, K-163 & B-163 (any SHA size) • CVL (ECC CDH KAS) (non-compliant less than 112 bits of encryption strength) # 2.2 Module Interfaces The figure below shows the module's physical and logical block diagram: Figure 1 - Module Boundary and Interfaces Diagram The interfaces (ports) for the physical boundary include the computer keyboard port, mouse port, network port, USB ports, display and power plug. When operational, the module does not transmit any information across these physical ports because it is a software cryptographic module. Therefore, the module's interfaces are purely logical and are provided through the Application Programming Interface (API) that a calling daemon can operate. The logical interfaces expose services that applications directly call, and the API provides functions that may be called by a referencing application (see Section 2.3 – Roles, Services, and Authentication for the list of available functions). The module distinguishes between logical interfaces by logically separating the information according to the defined API. The API provided by the module is mapped onto the FIPS 140- 2 logical interfaces: data input, data output, control input, and status output. Each of the FIPS 140- 2 logical interfaces relates to the module's callable interface, as follows: Page 12 of 20 | FIPS 140-2 Interface | Logical Interface | Module Physical Interface | |----------------------|-----------------------------------|---------------------------| | Data Input | Input parameters of API function | Network Interface | | | calls | | | Data Output | Output parameters of API function | Network Interface | | | calls | | | Control Input | API function calls | Keyboard Interface, Mouse | | | | Interface | | Status Output | For FIPS mode, function calls | Display Controller | | | returning status information and | | | | return codes provided by API | | | | function calls. | | | Power | None | Power Supply | Table 4 - Logical Interface / Physical Interface Mapping As shown in Figure 1 – Module Boundary and Interfaces Diagram and Table 5 – Module Services, Roles, and Descriptions, the output data path is provided by the data interfaces and is logically disconnected from processes performing key generation or zeroization. No key information will be output through the data output interface when the module zeroizes keys. # 2.3 Roles, Services, and Authentication The module supports a Crypto Officer and a User role. The module does not support a Maintenance role. The User and Crypto-Officer roles are implicitly assumed by the entity accessing services implemented by the Module. # 2.3.1 Operator Services and Descriptions The module supports services that are available to users in the various roles. All of the services are described in detail in the module's user documentation. The following table shows the services available to the various roles and the access to cryptographic keys and CSPs resulting from services: | Service | Roles | CSP / Algorithm | Permission | |-----------------------|---------|----------------------------------|--------------------| | Module initialization | Crypto | None | CO: | | | Officer | | execute | | Symmetric | User | AES Key, Triple-DES Key | User: | | encryption/decryption | 0301 | ALS Rey, Triple DES Rey | read/write/execute | | Digital signature | User | RSA Private Key, DSA Private Key | User: | | | | | read/write/execute | FIPS 140-2 Non-Proprietary Security Policy: Common Crypto Module for NetGard Privileged Gateway, SA5600-IA and NetGard MFD | Service | Roles | CSP / Algorithm | Permission | |----------------------|---------|--|--------------------| | Symmetric key | User | AES Key, Triple-DES Key | User: | | generation | | | read/write/execute | | Asymmetric key | User | RSA Private Key, DSA Private Key | User: | | generation | | | read/write/execute | | Keyed Hash (HMAC) | User | HMAC Key | User: | | | | HMAC SHA-1, HMAC SHA- 224, HMAC SHA- | read/write/execute | | | | 256, HMAC SHA-384, HMAC SHA-512 | | | Message digest (SHS) | User | SHA-1, SHA-224, SHA-256, SHA-384, SHA- | User: | | | | 512 | read/write/execute | | Random number | User | DRBG Seed and Seed Key | User: | | generation | | | read/write/execute | | Show status Crypto | | None | User and CO: | | | Officer | | execute | | | User | | | | Self test | User | All CSPs | User: | | | | | read/execute | | Zeroize | Crypto | All CSPs | CO: | | | Officer | | read/write/execute | | | User | | | Table 5 – Module Services, Roles, and Descriptions # 2.3.2 Operator Authentication As required by FIPS 140-2, there are two roles (a Crypto Officer role and User role) in the module that operators may assume. As allowed by Level 1, the module does not support authentication to access services. As such, there are no applicable authentication policies. Access control policies are implicitly defined by the services available to the roles as specified in Table 5 – Module Services, Roles, and Descriptions. # 2.4 Physical Security This section of requirements does not apply to this module. The module is a software-only module and does not implement any physical security mechanisms. # 2.5 Operational Environment The module operates on a general purpose computer (GPC) running a general purpose operating system (GPOS). For FIPS purposes, the module is running on this operating system in single user mode and does not require any additional configuration to meet the FIPS requirements. The module was tested on the following platforms: Microsoft Windows Server 2008 R2 on a Dell Optiplex 755 #### CentOS 6.3 on a Dell Optiplex 755 Compliance is maintained for other versions of the respective operating system family where the binary is unchanged. No claim can be made as to the correct operation of the module or the security strengths of the generated keys when ported to an operational environment which is not listed on the validation certificate. The GPC(s) used during testing met Federal Communications Commission (FCC) FCC Electromagnetic Interference (EMI) and Electromagnetic Compatibility (EMC) requirements for business use as defined by 47 Code of Federal Regulations, Part15, Subpart B. FIPS 140-2 validation compliance is maintained when the module is operated on other versions of the GPOS running in single user mode, assuming that the requirements outlined in NIST IG G.5 are met. # 2.6 Cryptographic Key Management The table below provides a complete list of Critical Security Parameters used within the module: | Keys and CSPs | Storage
Locations | Storage
Method | Input
Method | Output
Method | Zeroization | Access | |-----------------|----------------------|-------------------|-----------------|------------------|-------------|---------| | AES Key | RAM | Plaintext | API call | None | power cycle | CO: RWD | | | | | parameter | | cleanse() | U: RWD | | Triple-DES Key | RAM | Plaintext | API call | None | power cycle | CO: RWD | | | | | parameter | | cleanse() | | | | | | | | | U: RWD | | RSA Public Key | RAM | Plaintext | API call | None | power cycle | CO: RWD | | | | | parameter | | cleanse() | | | | | | | | | U: RWD | | RSA Private Key | RAM | Plaintext | API call | None | power cycle | CO: RWD | | | | | parameter | | cleanse() | | | | | | | | | U: RWD | | DSA Public Key | RAM | Plaintext | API call | None | power cycle | CO: RWD | | | | | parameter | | cleanse() | | | | | | | | | U: RWD | | DSA Private Key | RAM |
Plaintext | API call | None | power cycle | CO: RWD | | | | | parameter | | cleanse() | | | | | | | | | U: RWD | | HMAC Key | RAM | Plaintext | API call | None | power cycle | CO: RWD | | | | | parameter | | cleanse() | | | | | | | | | U: RWD | | Integrity Key | Module | Plaintext | None | None | None | CO: RWD | | | Binary | | | | | | | | | | | | | U: RWD | Page 15 of 20 FIPS 140-2 Non-Proprietary Security Policy: Common Crypto Module for NetGard Privileged Gateway, SA5600-IA and NetGard MFD | Keys and CSPs | Storage
Locations | Storage
Method | Input
Method | Output
Method | Zeroization | Access | |----------------|----------------------|-------------------|-----------------|------------------|-------------|---------| | EC DSA Private | RAM | Plaintext | None | None | power cycle | CO: RWD | | Key | | | | | cleanse() | | | | | | | | | U: RWD | | EC DSA Public | RAM | Plaintext | None | None | power cycle | CO: RWD | | Key | | | | | cleanse() | | | | | | | | | U: RWD | | EC DH Public | RAM | Plaintext | None | None | power cycle | CO: RWD | | Components | | | | | cleanse() | | | | | | | | | U: RWD | | EC DH Private | RAM | Plaintext | None | None | power cycle | CO: RWD | | Components | | | | | cleanse() | | | | | | | | | U: RWD | | HMAC DRBG | RAM | Plaintext | None | None | power cycle | CO: RWD | | Entropy | | | | | cleanse() | | | | | | | | | U: RWD | | HMAC DRBG V | RAM | Plaintext | None | None | power cycle | CO: RWD | | Value (Seed | | | | | cleanse() | | | Length) | | | | | | U: RWD | | HMAC DRBG Key | RAM | Plaintext | None | None | power cycle | CO: RWD | | | | | | | cleanse() | | | | | | | | | U: RWD | | HMAC DRBG | RAM | Plaintext | None | None | power cycle | CO: RWD | | init_seed | | | | | cleanse() | | | | | | | | | U: RWD | R = Read W = Write D = Delete #### Table 6 – Module Keys/CSPs The application that uses the module is responsible for appropriate destruction and zeroization of the key material. The module provides functions for key allocation and destruction which overwrite the memory that is occupied by the key information with zeros before it is deallocated. #### 2.6.1 Random Number Generation The module uses SP800-90A DRBGs for creation of asymmetric and symmetric keys. The module accepts input from entropy sources external to the cryptographic boundary for use as seed material for the module's Approved DRBGs. This external entropy source provides an estimated minimum amount of 93 bits of entropy, which limits the strength of the generated key. The module performs continual tests on the random numbers it uses to ensure that the seed and seed key input to the Approved DRBGs do not have the same value. The module also performs continual tests on the output of the Approved DRBGs to ensure that consecutive random numbers do not repeat. # 2.6.2 Key/Critical Security Parameter (CSP) Authorized Access and Use by Role and Service/Function An authorized application as user (the User role) has access to all key data generated during the operation of the module. ### 2.6.3 Key/CSP Storage Public and private keys are provided to the module by the calling process and are destroyed when released by the appropriate API function calls or during power cycle. The module does not perform persistent storage of keys. # 2.6.4 Key/CSP Zeroization The application is responsible for calling the appropriate destruction functions from the API. The destruction functions then overwrite the memory occupied by keys with zeros and deallocates the memory. This occurs during process termination / power cycle. Keys are immediately zeroized upon deallocation, which sufficiently protects the CSPs from compromise. ### 2.7 Self-Tests FIPS 140-2 requires that the module perform self tests to ensure the integrity of the module and the correctness of the cryptographic functionality at start up. In addition some functions require continuous verification of function, such as the random number generator. All of these tests are listed and described in this section. In the event of a self-test error, the module will log the error and will halt. The module must be initialized into memory to resume function. The following sections discuss the module's self-tests in more detail. #### 2.7.1 Power-On Self-Tests Power-on self-tests are executed automatically when the module is loaded into memory. The module verifies the integrity of the runtime executable using a HMAC-SHA1 digest computed at build time. If the fingerprints match, the power-up self-tests are then performed. If the power-up self-test is successful, a flag is set to place the module in FIPS mode. | ТҮРЕ | DETAIL | |---------------------------------|--| | Software Integrity Check | HMAC-SHA1 on all module components | | Known Answer Tests ¹ | AES encrypt/decrypt | | | AES GCM | | | • AES CCM | | | • XTS-AES | | | • AES CMAC | | | Triple-DES CMAC | | | • ECDH | | | • HMAC-SHA1 | | | • HMAC-SHA224 | | | • HMAC-SHA256 | | | • HMAC-SHA384 | | | • HMAC-SHA512 | | | • RSA | | | • SHA-1 | | | • SHA-224 | | | • SHA-256 | | | • SHA-384 | | | • SHA-512 | | | • SP 800-90 DRBG (Hash_DRBG, HMAC_DRBG, | | | CTR_DRBG) | | | Triple-DES encrypt/decrypt | | | ECC CDH | | Pair-wise Consistency Tests | • DSA | | | • RSA | | | • ECDSA | Table 7 – Power-On Self-Tests Input, output, and cryptographic functions cannot be performed while the Module is in a self-test or error state because the module is single-threaded and will not return to the calling application until the power-up self tests are complete. If the power-up self tests fail, subsequent calls to the module will also fail - thus no further cryptographic operations are possible. ¹ Note that all SHA-X KATs are tested as part of the respective HMAC SHA-X KAT. SHA-1 is also tested independently. #### 2.7.2 Conditional Self-Tests The module implements the following conditional self-tests upon key generation, or random number generation (respectively): | ТҮРЕ | DETAIL | |-----------------------------|---| | Pair-wise Consistency Tests | • DSA | | | RSA | | | ECDSA | | Continuous RNG Tests | Performed on all Approved DRBGs, the non- | | | approved X9.31 RNG, and the non-approved | | | DUAL_EC_DRBG | Table 8 – Conditional Self-Tests # 2.7.3 Cryptographic Function All security functions and cryptographic algorithms are performed in Approved mode. There is no non-FIPS mode of operation. The module verifies the integrity of the runtime executable using a HMAC-SHA1 digest which is computed at build time. If this computed HMAC-SHA1 digest matches the stored, known digest, then the power-up self-test (consisting of the algorithm-specific Pairwise Consistency and Known Answer tests) is performed. If any component of the power-up self-test fails, an internal global error flag is set to prevent subsequent invocation of any cryptographic function calls. Any such power-up self test failure is a hard error that can only be recovered by reinstalling the module². The power-up self-tests may be performed at any time by reloading the module. No operator intervention is required during the running of the self-tests. # 2.8 Mitigation of Other Attacks The Module does not contain additional security mechanisms beyond the requirements for FIPS 140-2 Level 1 cryptographic modules. ² The initialization function could be re-invoked but such re-invocation does not provide a means from recovering from an integrity test or known answer test failure # **3 Guidance and Secure Operation** # 3.1 Crypto Officer Guidance #### 3.1.1 Software Installation The module is provided directly to solution developers and is not available for direct download to the general public. The module and its host application is to be installed on an operating system specified in Section 2.5 or one where portability is maintained. There is no non-FIPS mode. The module only provides a FIPS mode of operation. # 3.1.2 Additional Rules of Operation - 1. The writable memory areas of the module (data and stack segments) are accessible only by the application so that the operating system is in "single user" mode, i.e. only the application has access to that instance of the module. - 2. The operating system is responsible for multitasking operations so that other processes cannot access the address space of the process containing the module. #### 3.2 User Guidance #### 3.2.1 General Guidance The module is not distributed as a standalone library and is only used in conjunction with the solution. The end user of the operating system is also responsible for zeroizing CSPs via wipe/secure delete procedures. If the module power is lost and restored, the calling application can reset the IV to the last value used.